Institute of Environmental Medicine Institutet för Miljömedicin

Setting occupational exposure limits for carcinogens

Gunnar Johanson

Professor of occupational toxicology and risk assessment

Chairman of the Nordic Expert Group

gunnar.johanson@ki.se

cancer Injuries 24% Circulatory 52% 22% Cancer **Others**

Half of the work-related fatalities in EU are caused by

Causes of work-related fatalities in the EU-28

https://osha.europa.eu/en/publications/international-comparison-cost-work-related-accidents-and-illnesses

Over 100 000 workers die per year from work-related cancer in Europe https://oshwiki.eu/wiki/Eliminating_occupational_cancer_in_Europe_and_globally

Most common cancer agents

Number of exposed workers

1 Solar radiation

	Number of exposed workers (EU-15 1990-1993					
2. ETS	0	2,000,000	4,000,000	6,000,000	8,000,000	10
2. 210	Solar radiation					
3. Silica	ETS				_	
	Silica, crystalline		-			
	Diesel engine exhaust		•			
4. Radon	Radon and its decay products					
	Wood dust					
5. Diesel engine exhaust	Lead and its compounds					
	Benzene					
	Asbestos					
Number of cancer cases	Ethylene dibromide					
	Formaldehyde					
1. Asbestos	PAHs (excluding ETS)					
	Glass wool					
	Tetrachloroethylene					
2. Shift work	Chromium VI compounds					
	Sulphuric acid mist					
3. Mineral oils	Nickel compounds					
	Styrene					
	Methylene chloride					
4. Solar radiation	Trichloroethylene					

Number of exposed workers (ELL15 1000-1003)

5. Silica

EU OSHA 2014 https://osha.europa.eu/en/publications/exposure-carcinogens-and-work-related-cancer-review-assessment-methods

Many approaches to control cancer agents at work

- Ban, restrictions
- As low as reasonably achievable ALARA
- Prevention measures STOP
- Occupational exposure limits OELs

"OELs are a cornerstone to reduce dangerous chemical exposures at work"

Bertil Remaeus, former chair, EU-OSHA Governing Board

EU OSHA 2018 <u>https://osha.europa.eu/en/publications/info-sheet-legislative-framework-dangerous-substances-workplaces/view</u>

Two types of OELs in the EU

Indicative OELs

- Established for chemicals with a threshold
- Threshold exposure level below which adverse health effects do not occur
- "Health-based"
- Chemical Agents Directive (CAD)

Binding OELs

- When a threshold mechanism is not known
- Carcinogens, mutagens and airway sensitisers
- "Risk-based"
- Carcinogens and Mutagens Directive (CMD) and CAD

Both are set for a typical 8-h working day

- Time weighted average
- 8 h/day, 5 days/week, 40 years

SCOEL 2017, https://op.europa.eu/en/publication-detail/-/publication/3c8ef3e0-48fc-11e8-be1d-01aa75ed71a1 ECHA 2019, https://echa.europa.eu/documents/10162/23036412/ircsa_r8_appendix_oels_en.pdf/f1d45aca-193b-a7f5-55ce-032b3a13f9d8

Important to consider <u>both</u> the number of workers affected <u>and</u> the risk to the individual

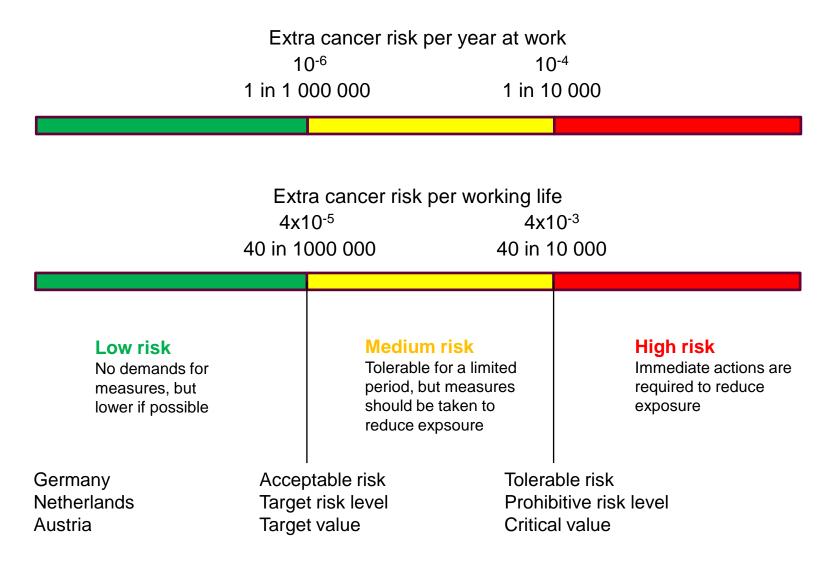
A high individual risk is unacceptable also when few workers are exposed

"Every worker has the right to working conditions which respect his or her health, safety and dignity "

Charter of Fundamental Rights of the European Union, Article 31-1 <u>https://www.europarl.europa.eu/charter/pdf/text_en.pdf</u>

"Everyone has the right to work, to free choice of employment, to just and favourable conditions of work and to protection against unemployment "

Universal Declaration of Human Rights / United Nations, Article 23-1 https://www.ohchr.org/EN/UDHR/Documents/UDHR_Translations/eng.pdf



"Traffic light model" as a tool for risk management

Crystalline silica

11 to 54 cancer deaths per 1000 workers

Hexavalent chromium

20 extra lung cancers per 1000 workers

2-Nitropropane

28 tumours per 1000 workers (based on animal data)

Life-time extra cancer risk, linear non-threshold extrapolation, assuming lifelong exposure at work at the current binding OEL, based on US OSHA and SCOEL cancer risk assessments

Johanson & Tinnerberg, 2019 (https://pubmed.ncbi.nlm.nih.gov/30969344/)

How derive an OEL for a carcinogen?

- What is the acceptable risk level?
- How calculate the cancer risk at work-relevant exposures?

Use of human data

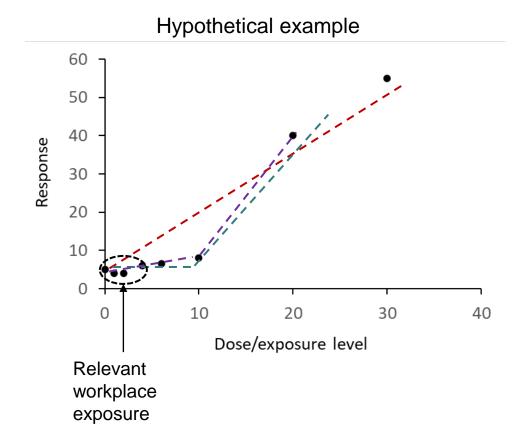
Many people get cancer for a variety of reasons (genetic, environmental)

All are exposed to a variety of agents

 \Rightarrow difficult to identify an exposure factor that causes cancer in 4 of 1000 workers

Use of animal and in vitro data

Good control of the exposure, but


- high doses needed to detect an effect how translate to far lower exposure levels at work?
- does the chemical cause the same effect in humans as in the test system?

What is the risk at relevant exposure?

- How to extrapolate from high dose high risk (where we have data) to low dose low risk?
- Is there a threshold, i.e. no cancer risk below a certain dose ?

How extrapolate to low dose? Threshold or no threshold?

Threshold model – zero excess risk below threshold

Health-based OEL set below threshold

Linear no threshold model – any exposure entails increased risk Risk-based OEL

Hockey-stick model – two dose-response slopes

Read more in Hartwig et al, 2020 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303094/

The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals

Approaches for OEL setting of carcinogens

https://www.av.se/en/the-nordic-expert-group