Environmental and occupational cancers: understanding the factors shown to influence cancer risk

Dra Cristina Martínez-González Hospital Universitario Central de Asturias Facultad de Medicina. Universidad de Oviedo ISPA – FINBA Coordinadora Área EROM, SEPAR Oviedo - España

Lung cancer

1. Lung cancer is a very important health problem in Europe

Estimated age-standardized incidence rates (World) in 2018, Europe, both sexes, all ages

Data source: Globocan 2018 Graph production: Global Cancer Observatory (http://gco.iarc.fr)

World Health Organization Estimated age-standardized incidence and mortality rates (World) in 2018, Europe, both sexes, all ages

Data source: Globocan 2018 Graph production: Global Cancer Observatory (http://gco.iarc.fr)

World Health Organization

Lung cancer

1. Lung cancer is a very important health problem in Europe

2. The best approach to the problem is early diagnosis and prevention

EUnetHTA Joint Action 3 WP4

Rapid assessment of other technologies using the HTA Core Model[®] for Rapid Relative Effectiveness Assessment

LUNG CANCER SCREENING IN RISK GROUPS

Project ID: OTCA28

Version 1.5, 25.11.2020

Lung cancer

1. Lung cancer is a very important health problem in Europe

2. The best approach to the problem is early diagnosis and prevention

3.Prevention should target known risk factors

smoking

Passive Smoke

People who are exposed to passive smoke during adulthood are 1.41 times more likely to develop lung cancer compared to never-smokers unexposed to passive smoke relative risk ratio 1.41, (95%CI: 1.21–1.65)

European Lung Foundation. SMOKEHAZ. A scientific review of the health hazards of smoking – Lung cancer; Passive smoking. 2013; Available from: https://www.europeanlung.org/en/projects-andresearch/projects/smokehaz/lungconditions/home/adults/lung-cancer/ [cited 15.07.2020]

aging

López-Otín C. et al. The Hallmarks of Aging. http://dx.doi.org/10.1016/j.cell.2013.05.039

family history

The risk of lung cancer was more than five-fold higher among individuals who had a family history of lung cancer and two copies of the high-risk alleles rs8034191 and rs1051730

Liu P, Vikis HG, Wang D, Lu Y, Wang Y, Schwartz AG, Pinney SM, Yang P, de Andrade M, Petersen GM, et al: Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer. J Natl Cancer Inst 2008;100:1326-30

Approximately 25% of lung cancer cases world wide are not attributable to smoking

Sun, S., Schiller, J. & Gazdar, A. Lung cancer in never smokers — a different disease. *Nat Rev Cancer* 2007;7:778–90

Radon

- Radon was classified as a human Group I carcinogen by the International Agency for Research on Cancer in 1988
- The US Environmental Protection Agency recognised indoor exposure to radon as the second leading risk factor for lung cancer after smoking, and the first risk factor for nonsmokers

Small cell lung cancer in never-smokers

María Torres-Durán¹, Alberto Ruano-Ravina^{2,3,4}, Karl T. Kelsey⁴, Isaura Parente-Lamelas⁵, Mariano Provencio⁶, Virginia Leiro-Fernández¹, José Abal-Arca⁵, Carmen Montero-Martínez⁷, Iria Vidal-Garcia⁷, Carolina Pena⁸, Olalla Castro-Añón⁹, Antonio Golpe-Gómez¹⁰, Cristina Martínez¹¹, Rosirys Guzmán-Taveras¹¹, María José Mejuto-Martí¹², Alberto Fernández-Villar¹ and Juan Miguel Barros-Dios^{2,3,13}

Affiliations: ¹Service of Pneumology, University Hospital Complex of Vigo, Vigo, Spain. ²Dept of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain. ³CIBER de Epidemiología y Salud Pública (CIBERESP), Spain. ⁴Dept of Epidemiology, Brown School of Public Health, Brown University, Providence, Rhode Island, USA. ⁵Service of Pneumology, Ourense Hospital Complex, Ourense, Spain. ⁶Service of Oncology, Puerta de Hierro University Hospital, Madrid, Spain. ⁷Service of Pneumology, University Hospital Complex of A Coruna, A Coruna, Spain. ⁸Service of Oncology, Oncologic Center of A Coruna, A Coruna, Spain. ⁹Service of Pneumology, Hospital Lucus Augusti, Lugo, Spain. ¹⁰Service of Pneumology, Santiago de Compostela University Clinic Hospital, Santiago de Compostela, Spain. ¹¹National Institute of Silicosis, University Hospital of Asturias, Oviedo, Spain. ¹²Service of Pneumology, Arquitecto Marcide Hospital, Ferrol, Spain. ¹³Service of Preventive Medicine, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain.

Residential radon exposure is higher than the action levels recommended by the World Health Organization.

Dr. Alberto Ruano-Ravina

Human Cancer: Known Causes and Prevention by Organ Site

IARC Monographs on the Identification of Carcinogenic Hazards to Humans and Handbooks of Cancer Prevention

Monographs 1-128, Handbooks 1-17, updated 27 November 2020 Agents classified as carcinogenic to humans (Group 1) (in red) Interventions with sufficient evidence of a cancer-preventive effect (in green)

Asbestos (all forms) Erionite Fluoro-edenite fibrous amphibole Painter (occupational exposure as) Outdoor air pollution, particulate matter in Painter (occupational exposure as) Plutonium Quitting smoking Radon-222 and its decay products Rubber manufacturing industry Silica dust, crystalline Soot Sulfur mustard Tobacco smoke, secondhand Tobacco smoking Welding fumes X-radiation

Figure 2.2 Top 10 non-communicable diseases causing deaths attributable to the environment in the high income European countries, 2012

Note: The high-income countries in Europe include Andorra, Austria, Belgium, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Latvia, Lithuania, Luxembourg, Malta, Monaco, the Netherlands, Norway, Poland, Portugal, San Marino, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Source: WHO (2016b).

Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Summary

Background Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between Lancet Oncol 2013; 14: 813-22 long-term exposure to ambient air pollution and lung cancer incidence in European populations. Published Online

A PIVI10		
Study	HR (95% CI) Wei	ght (%)
HUBRO	1.06 (0.50-2.27) 4	92
SNAC-K	- 0-89 (0-37-2-12) 3	71
SALT	0.69 (0.32-1.47) 4	-82
Sixty III	1.63 (0.72-3.67) 4	29
SDPP	1.17 (0.40-3.40) 2	48
DCH	1.10 (0.69-1.76) 12	-77
EPIC-MORGEN	0.36 (0.08-1.57) 1	-33
EPIC-PROSPECT	1-89 (0-35-10-31) 0	98
EPIC-Oxford	1.64 (0.50-5.39) 1	99
VHM&PP	1.20 (0.87-1.66) 27	70
EPIC-Turin	1-45 (0-69-3-04) 5	11
SIDRIA-Turin	1-41 (0-46-4-31) 2	27
SIDRIA-Rome •	1-35 (0-85-2-16) 12	-85
EPIC-Athens +	1-55 (1-00-2-40) 14	79
Overall (I ² =0-0%, p=0-828)	1-22 (1-03-1-45) 100-	00
0.25 0.5 1	2 4 6	

DN A40

<u>Environ Health Perspect</u>. 2014 Sep; 122(9): 906–911. Published online 2014 Jun 6. doi: <u>10.1289/ehp/1408092</u> Review

Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis

<u>Ghassan B. Hamra</u>,^{©1} <u>Neela Guha</u>,¹ <u>Aaron Cohen</u>,² <u>Francine Laden</u>,^{3,4,5} <u>Ole Raaschou-Nielsen</u>,⁶ Jonathan M. Samet,⁷ <u>Paolo Vineis</u>,⁸ <u>Francesco Forastiere</u>,⁹ <u>Paulo Saldiva</u>,¹⁰ <u>Takashi Yorifuji</u>,¹¹ and <u>Dana Loomis</u>¹

Estimates for the relationship between a 10-µg/m³ change in PM_{2.5} and PM₁₀ and histological cancer subtypes.

Exposure and outcome	RR (95% CI)	n	Studies included (by ID) a
PM _{2.5}			
Adenocarcinoma	1.40 (1.07, 1.83)	2,339	9, 10, 15
Squamous cell carcinoma	1.11 (0.72, 1.72)	1,523	9, 15
PM10			
Adenocarcinoma	1.29 (1.02, 1.63)	965	10, 15
Squamous cell carcinoma	_	_	_

RR, meta-relative risk. Estimates are the result of random-effects meta-analysis. ^aStudies included in the analysis according to ID numbers listed in Table 1.

OUTDOOR AIR POLLUTION VOLUME 109

There is *sufficient evidence* in humans for the carcinogenicity of particulate matter in outdoor air pollution. Particulate matter in outdoor air pollution causes cancer of the lung.

IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS

Chronic Effects of High Fine Particulate Matter Exposure on Lung Cancer in China

Jianxin Li ^{1,2}, Xiangfeng Lu ^{1,2}, Fangchao Liu ¹, Fengchao Liang ¹, Keyong Huang ¹, Xueli Yang ¹, Qingyang Xiao ³, Jichun Chen ¹, Xiaoqing Liu ⁴, Jie Cao ¹, Shufeng Chen ¹, Show All... https://doi.org/10.1164/rccm.202001-0002OC PubMed: <u>32614242</u> Originally Published in Press as DOI: 10.1164/rccm.202001-0002OC on July 2, 2020

Measurements and Main Results: A total of 844 incident lung cancer cases were identified during 915,053 person-years of follow-up. Among them, 701 lung cancer deaths occurred later. The exposure-response curves for lung cancer associated with PM_{2,5} exposure were nonlinear, with steeper slopes at the higher concentrations. Adjusted for age, sex, geographical region, urbanization, education level, smoking status, alcohol consumption, work-related physical activity, and body mass index, participants exposed to the second-fifth quintiles of PM_{2,5} had higher risk for lung cancer incidence than those exposed to the first quintile, with hazard ratios of 1.44 (95% confidence interval [CI], 1.10–1.88), 1.49 (95% CI, 1.12–1.99), 2.08 (95% CI, 1.42–3.04), and 2.45 (95% CI, 1.83–3.29), respectively. The corresponding hazard ratios for lung cancer mortality were 1.83 (95% CI, 1.33–2.50), 1.80 (95% CI, 1.29–2.53), 2.50 (95% CI, 1.62–3.86), and 2.95 (95% CI, 2.09–4.17), respectively.

Conclusions: We provide strong evidence that high PM_{2.5} exposure leads to an elevated risk of lung cancer incidence and mortality, highlighting that remarkable public health benefits could be obtained from the improvement of air quality in highly polluted regions.

Conclusion

Healthy environment, healthy lives